Approach to a neonate with congenital diarrhea

Dr. Vishnu D. Biradar

MD, PDCC, Fellowship in Pediatric Liver Transplant (UK)

Cons Pediatric Gastroenterologist & Hepatologist

Jupiter Hospital, Baner, Pune &

Kamal Endoscopy Center, Shivajinagar, Pune

Member of IAP, ISPGHAN, ESPGHAN, ISG

Introduction:

- Congenital diarrheas and enteropathies (CODEs) are rare cause of devastating persistent and life-threatening intractable diarrhea in infants.
- Evaluation of CODEs is a lengthy process and infrequently leads to a clear diagnosis.
 Genomic analyses and the development of model systems have increased our understanding of CODE pathogenesis.
- Most CODEs display similar clinical presentation despite different outcomes.
 Endoscopic biopsies can reveal abnormalities in crypt -villous structure, enterocyte distribution and morphology or inflammatory activities.
- A genetic analysis has become a key component in the diagnostic approach, esp.
 whole genome sequencing helps in diagnosis.

Classification:

A. Clinically:

- I. Diet induced diarrhea "Osmotic diarrhea"
- II. Enterocyte-transport-related diarrhea "Secretroy diarrhea"

B. According to pathophysiology

- I. Disorder of Epithelial Nutrient/ Electrolyte transport
- II. Disorder of Epithelial Enzymes and Metabolism
- III. Disorder of Epithelial Trafficking and Polarity
- IV. Disorder of Enteroendocrine Cell Function
- V. Immune dysregulation associated Enteropathies
- VI. Others like milk allergy, post infectious enteropathy etc

Evaluation:

History

- Antenatal history (Polyhydramnios, Dilated Bowel loops)
- Age of onset
- Nature of symptoms
- Extraintestinal manifestation
- Recurrent infection
- Nutrition & Diet history
- Family history
- Consanguinity +/-
- Ethnicity

Examination

- Full physical examination
- Growth parameters
- Dysmorphic features
- Skin rash/ Hyperpigmentation

Type of stool

- Watery
- Fatty
- Bloody

Steps in evaluation

A) First Evaluation

- 1. After history and examination, quantification of stool output other than urine output should be calculated.
- 2. Frequency and weight of stool to be noted.
- 3. 24 hours fasting to be done
- 4. To calculate and note the stool output
- 5. If diarrhea ceases or reduced more than 50% and Ion Gap is > 50 then it is Osmotic diarrhea.
- 6. If diarrhea persists and/ or Ion Gap < 50 then it is Secretory diarrhea
- 7. As per cause, further evaluation can be planned
- 8. In case of osmotic diarrhea, reduction of osmotic load (Lactose) will help

9. In case of secretory diarrhea, child should be started on TPN and further evaluation should be planned

B) Second Step in Evaluation – Laboratory tests

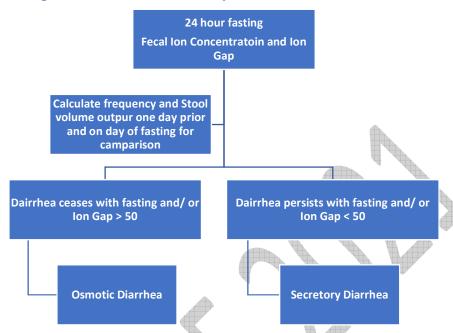


Fig. 1 Approach to broadly categorize the type of diarrhoea

Table. 1 Laboratory tests

C	T 1 4 4 14	D: ·	E 41 4 4	TD 4 4
Sr.	Lab test result	Diagnosis	Further test	Treatment
No.				
	Essal all 45	Lastas Intalananas/		Reduction in lactose
	Fecal pH< 5	Lactose Intolerance/		Reduction in factose
1	and Reducing	Glcuose Galactose		load and lastly
	substance	Malabsorption		lactose free diet
	positive			
2	Hypoalbumine	Intestinal biopsy showed		MCT based diet
	mia	dilated lymphatic		
		MVID/ Tufting		TPN +/- Small
		Enteropathy		bowel transplant
		Autoimmmune		Autoimmune
		inflammatory changes		enteropathy
3.	Fecal Na > 145	Congenital sodium		ORS +/- TPN
	mM/L	Diarrhea		

4.	Fecal Cl > 90	Congenital Chloride	ORS +/- TPN
	mM/L	Diarrhea	
5.	TG < 10 mg/dl	Abetalipoproteinemia/	MCT based diet +
	and Cholesterol	Hypobetalipoproteinemia	Vitamin ADEK
	< 40 mg/dl	1	
		Chylomicron Retentin	
		Disease	
6	Hyponatremia	Cystic Fibrosis	Pancreatic Enzyme
	with Metabolic		Replacement
	alkalosis		
7	Bloody stool	Monogenic IBD/ PID	Immunosuppression
			+/- Bone Marrow
			Transplant
8	CT scan	Scwachman Diamond	
	showed	Syndrome	
	fibrosed		
	pancreas		

Clinical Presentation with Brief details as per classification discussed above

A) Disorder of Epitheliac Nutrient/ Electrolyte Transport

Sr. No.	Diagnosis	Clinical Feature	Mutation	Management
1.	Congenital	Polyhydramnios,	SLC26A3	Hydration, Electrolyte
	Chloride	Severe diarrhea		supplementation, TPN,?
	Diarrhea	at birth, Born		Butyrate
		with dilated		
		fluid-filled		
		bowel loops,		
		pseudo-		
		obstruction-like,		
		volvulus,		

		hypochloremic		
		hypokalemic		
		metabolic		
		alkalosis, high		
		fecal chloride		
		level		
		(>90mM/L)		
2	Congenital	Born with	SLC9A3	Hydration, Nutrient,
	Sodium	dilated fluid-		Electrolyte support, TPN
	Diarrhea	filled bowel		
		loops, pseudo-	4	
		obstruction-like,		
		volvulus, high		
		fecal Na+,		
		Metabolic		
		acidosis		
		GUCY2C risk of		
		IBD		
3	Glucose-	Diarrhea, Severe	SLC5A1	Glucose/Galactose-free
	Galactose	dehydration,		diet
	Malabsorption	Hypernatremia,		
		Metabolic		
		acidosis, Renal		
		failure, Nephro-		
		calcinosis		
4	Primary Bile	Watery diarrhea	SLC10A2/	Bile acid sequestrants e.g.,
	Acid	and fat	SLC51B	cholestyramine
	Malabsorption	malabsorption		

B) <u>Disorder of Epithelial Enzymes and Metabolism</u>

- a. Alteration in several important enzymes involved in both nutrient absorption as well as epithelial cell metabolism result in severe diarrhea
- b. Defects in brush-border enzymes involved in carbohydrate digestion, such as lactase and sucrose-isomaltase, result in a diet-induced diarrhea
- c. Onset after intake of carbohydrate-containing formula or food
- d. Exhibit grossly normal intestinal biopsy
- e. Loss of function mutation in DGAT1 diarrhea, emesis, PLE, exudative enteropathy, growth failure, induced by enteral intake of lipids.
- f. Management: Fat free diet, Cholestyramine, Pancreatic enzymes
- g. Mutation in:
 - i. Microsomal triglyceride transfer protein (MTTP) resulting in abetalipoproteinemia
 - ii. Apolipoprotein B hypobetalipoproteinemia, or chylomicron retention disease (SAR1B)

C) <u>Disorder of Epithelial Trafficking and Polarity</u>

1. Microvillous Inclusion Disease (MVID)

- a. MVID present with severe watery diarrhea and dehydration
- b. Microvillous inclusion on electron microscopy in 10% of duodenal enterocytes & villous atrophy
- c. Require PN support for life
- May benefit from liver/ intestinal transplantation if they develop PNassociated complications
- e. More recently a non-PN-related phenotype with normal GGT cholestasis was described in patients MYO5B mutations

2. Congenital Tufting Enteropathy (CTE)

- a. CTE present with watery, sodium-losing diarrhea in the first weeks of life
- b. Mutations in then Epithelial cell adhesion molecule (EpCAM) cause typical form of CTE
- c. Syndromic form SPINT2: anal and choanal atresia as well as
 ophthalmological signs (corneal erosions, optic nerve coloboma, and
 intermittent exotropia)
- d. Intestinal biopsy showed villous atrophy, focal epithelial "Tufts"
- e. Management by TPN and Small bowel transplant

3. Tricho-hepatic-enteric Syndrome (Syndromic Diarrhea)

- a. Mutations in the TTC37 gene in 60% of cases
- b. Remainder associated with SKIV2L mutation
- c. Multisystemic disease:
 - i. Intrauterine growth restriction
 - ii. Intractable diarrhea, FTT
 - iii. Facial dysmorphism (prominent forehead and cheeks, broad nasal root and hypertelorism)
 - iv. Hair abnormalities like wooly and easily removable, hyperkeratosis
 - v. Immune disorder: abnormal T-cell function and antibody production
 - vi. Liver abnormalities, Skin abnormalities like hyperpigmentation, congenital heart defect, Mental Retardation, Goiteretc
- d. Management by TPN and Immunoglobulin

D) <u>Disorder of Enteroendocrine Cell Function</u>

- a. Mutation in NEUROG3, RFX6/ARX, PCSK1
- b. Result in generalized mal-absorptive diarrhea
- c. Associated with multiple endocrinopathies (IDDM, Hypothyroidism, DI, Adrenal Insufficiency)
- d. Diet-induced diarrhea that is not specific to any single nutrient
- e. Intestinal biopsies: normal crypt to villous ratio
- f. Management: TPN for first several years of life
- g. Diarrhea symptoms persist

E) Immune Dysregulation-Associated Enteropathies

- a. Monogenic disorders cause dysregulation of the immune system and subsequently inflammation and enteropathy
- b. Mutation in FOXP3, ICOS, IL10R, TRIM22, ARPC1B
- c. Many of these disorders have been classifies as infantile-onset inflammatory bowel disease
- d. Most of these diseases are curable with bone marrow transplantation

- Congenital diarrheas cause life threatening intractable diarrhea in infants
- Lack of awareness of these disorders can result in complications and unnecessary surgical procedures
- Management of these patients requires a multidisciplinary team approach
- Genetic testing has become a key component in the diagnostic approach
- Understanding the pathophysiology will aid in future targeted therapeutics.
- Small bowel transplant is treatment and will be possible in India too.

References

- 1. Terrin G et al. Int. J. Med. Sci. 2012
- 2. Jay RT, et al. Gastroenterology 2018
- 3. Cunani RB, et al. Nat Rev Gastroenterol Hepatol. 2015
- 4. Muller T, et al. Gut 2016
- 5. Kuokkanen M, et al. Am J Jum Genet. 2006
- 6. Gluchowski NL, et al. J Lipid Res. 2017
- 7. Girard M, et al. Hepatology 2014
- 8. Qiu Y-L, et al. Hepatology. 2017
- 9. Sivagnanam M, et al. Gastroenterology 2008
- 10. Salomon J, et al. Hum Genetic. 2014
- 11. Hartley JL, et al. Gastroenterology. 2010
- 12. Fabre A, et al. Am J Hum Genetic. 2012
- 13. Wang J, et al. N Engl J Med. 2006
- 14. Martin MG, et al. Gastroenterology. 2013
- 15. Bennett CL, et al. Nat Genet. 2001
- 16. Charbonnier L-M et al. J Allergy Clin Immunol. 2015
- 17. Blaydon DC, et al. N Engl J Med.2011